If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+5t+1.1=0
a = -4.9; b = 5; c = +1.1;
Δ = b2-4ac
Δ = 52-4·(-4.9)·1.1
Δ = 46.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{46.56}}{2*-4.9}=\frac{-5-\sqrt{46.56}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{46.56}}{2*-4.9}=\frac{-5+\sqrt{46.56}}{-9.8} $
| 6/11(x+5)=-6 | | (x-11)/x=87/100 | | 8(-2+2v)=-128 | | 21.8-g=11.6 | | 4(x-4)+17=3(x+30) | | y=(-4)(-4)+2(-4)-7 | | z-47=38 | | 4(x-4)+17=3(x+30 | | 6-(3w+5)=7-w | | 2q^2+3q−4=0 | | y=(-5)(-5)+2(-5)-7 | | (x-10)/x=88/100 | | 6x+7=4x+55 | | .5(h-1)(h)=15 | | y=(-4)(-4)+4(-4) | | y=(-3)(-3)+4(-3) | | 40=-10x-80 | | k/8=2 | | 7x^2-14x-245=0 | | -19x-1=-12x+24 | | y=(-2)(-2)+4(-2) | | 600x-15+15=15 | | 3-0.4x=-0.4x+3 | | y=(-1)(-1)+4(-1) | | v-27=91 | | -129=7-8x | | 12-11a=45+12 | | y=0*0+4*0 | | x=1.125+24/20 | | U=49-6u | | 40=10x-80 | | Y=-5/7x+4 |